

Kinetic Equations

Solution to the Exercises

– 03.03.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $T \geq 0$ be a positive real number and $b \in C^1([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be a bounded vector field. Let $X \in C^1([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be the flow associated to b , i.e., the unique differentiable solution to

$$\begin{cases} \partial_s X(s, t, x) = b(s, X(s, t, x)), & \forall (s, t, x) \in [0, T] \times [0, T] \times \mathbb{R}^d, \\ X(t, t, x) = x, & \forall (t, x) \in [0, T] \times \mathbb{R}^d \end{cases} \quad (1)$$

a Prove that X satisfies the semigroup property, i.e.,

$$X(r, s, X(s, t, x)) = X(r, t, x), \quad \forall r, s, t \in [0, T], \forall x \in \mathbb{R}^d. \quad (2)$$

b Use point **a** to prove that for any $s, t \in [0, T]$ the map $X(s, t, \cdot) \in C^1(\mathbb{R}^d; \mathbb{R}^d)$ is a C^1 diffeomorphism, i.e. it is invertible with its inverse in $C^1(\mathbb{R}^d; \mathbb{R}^d)$.

Proof. For the proof of **a**, fix $s, t \in [0, T]$, $x \in \mathbb{R}^d$ and consider the functions $u(r) := X(r, s, X(s, t, x))$ and $v(r) := X(r, t, x)$. By definition of X , they both solve the problem

$$\begin{cases} \partial_r f(r) = b(r, f(r)), & r \in [0, T], \\ f(s) = X(s, t, x), \end{cases} \quad (3)$$

with s and x fixed. Given that the solution to this problem is unique, u is equal to v and this proves (2).

To prove **b**, using point **a** we get that for any $s, t \in [0, T]$, $x \in \mathbb{R}^d$ we get

$$X(t, s, X(s, t, x)) = x = X(s, t, X(t, s, x)). \quad (4)$$

This implies that $X(t, s, \cdot)$ is both a left and right inverse of $X(s, t, \cdot)$; given that $X(t, s, \cdot)$ is C^1 , this proves **b**.

□

Exercise 2

Let $T \geq 0$ be a positive real number, $b \in C^1([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be a bounded vector field and $X \in C^1([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be again the flow associated to b . Define the *Jacobian* $J \in C([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R})$ as we did in class as

$$J(s, t, x) := \det(\nabla_x X)(s, t, x). \quad (5)$$

From classical results in the theory of ordinary differential equations, $\partial_s J$ exists and is in $C([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R})$.

Show that $J(s, t, x) > 0$ for all $(s, t, x) \in [0, T] \times [0, T] \times \mathbb{R}^d$ and that J solves

$$\begin{cases} (\partial_s J)(s, t, x) = (\operatorname{div}_x b)(s, X(s, t, x)) J(s, t, x), & \forall (s, t, x) \in [0, T] \times [0, T] \times \mathbb{R}^d, \\ J(t, t, x) = 1, & \forall (t, x) \in [0, T] \times \mathbb{R}^d. \end{cases} \quad (6)$$

Prove moreover that J satisfies

$$\partial_t J(s, t, x) + \operatorname{div}_x(b(t, x) J(s, t, x)) = 0. \quad (7)$$

*Hint: You can assume without proof that $\partial_s \nabla_x X$ exists and it is in $C([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R})$, and is equal to $\nabla_x \partial_s X$. For a proof of this result, one can look at Theorem 2.10 in the book **Ordinary Differential Equations and Dynamical Systems** from Gerald Teschl, available online for free.*

Proof. From Exercise 1 we get that

$$X(s, t, X(t, s, x)) = x. \quad (8)$$

If we differentiate this family of equalities we get the equality of matrices given as:

$$(\nabla_x X)(t, s, x) \cdot (\nabla_x X)(s, t, X(t, s, x)) = \operatorname{id}_{\mathbb{R}^d}. \quad (9)$$

If we now do the determinant of both sides we get, by definition of Jacobian, that

$$J(t, s, x) J(s, t, X(t, s, x)) = 1. \quad (10)$$

This immediately implies that $J(s, t, x) \neq 0$ for any $(s, t, x) \in [0, T] \times [0, T] \times \mathbb{R}^d$; moreover, given that the sign of J is a continuous function, J itself is either going to be always positive or always negative. Given that $J(t, t, x) = \det(\nabla X)(t, t, x) = \det \operatorname{id}_{\mathbb{R}^d} = 1$, we get that it needs to be always positive.

For the next part, first recall the *Jacobi's formula*, i.e., let $A \in C^1([0, T]; GL_n(\mathbb{R}))$; then we have that $\det(A) \in C^1([0, T])$ and

$$\partial_t \det(A(t)) = (\det A(t)) \operatorname{tr}\left((A(t))^{-1} (\partial_t A)(t)\right). \quad (11)$$

As a consequence, the derivative of J can be computed as

$$\partial_s J(s, t, x) = \partial_s (\det(\nabla_x X)(s, t, x)) \quad (12)$$

$$= \det((\nabla_x X)(s, t, x)) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x)) \partial_s (\nabla_x X)(s, t, x)) \quad (13)$$

$$= J(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x)) \partial_s (\nabla_x X)(s, t, x)). \quad (14)$$

Recall that we can from the definition of X we get

$$\partial_s X(s, t, x) = b(s, X(s, t, x)). \quad (15)$$

Applying now the operator ∇_x we get

$$\partial_s \nabla_x X(s, t, x) = \nabla_x \partial_s X(s, t, x) = (\nabla_x X)(s, t, x) (\nabla_x b)(s, X(s, t, x)). \quad (16)$$

Substituting back in the derivative of J and using (9) we get

$$\begin{aligned} \partial_s J(s, t, x) &= J(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x)) (\nabla_x X)(s, t, x) (\nabla_x b)(s, X(s, t, x))) \\ &\quad (17) \end{aligned}$$

$$= J(s, t, x) \operatorname{tr}((\nabla_x b)(s, X(s, t, x))). \quad (18)$$

By definition of trace now we get that if F is a vector field, $\operatorname{tr}(\nabla_x F) = \operatorname{div}_x F$, and therefore

$$\partial_s J(s, t, x) = (\operatorname{div}_x b)(s, X(s, t, x)) J(s, t, x). \quad (19)$$

Using the fact that $J(t, t, x) = \det(\nabla_x X)(t, t, x) = \det(\nabla_x x) = 1$ we get (6).

For the derivative in t of $J(s, t, x)$, we first recall that the derivative in t of $X(s, t, x)$ is given by

$$\partial_t X(s, t, x) = -b(t, x) \cdot (\nabla_x X)(s, t, x). \quad (20)$$

As a consequence we get that

$$\partial_t J(s, t, x) = \partial_t (\det(\nabla_x X)(s, t, x)) \quad (21)$$

$$= \det(\nabla_x X)(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x)) \partial_t \nabla_x X(s, t, x)) \quad (22)$$

$$= J(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x)) \nabla_x \partial_t X(s, t, x)). \quad (23)$$

Applying the definition of the gradient we get

$$\nabla_x \partial_t X(s, t, x) = -\nabla_x (b(t, x) \cdot (\nabla_x X)(s, t, x)) \quad (24)$$

$$= -(\nabla_x b)(t, x) (\nabla_x X)(s, t, x) - b(t, x) \cdot \nabla_x (\nabla_x X)(s, t, x) \quad (25)$$

On the other hand, we can consider what is the gradient in x of J ; to do so, we consider the derivative along the j -th component of J to get

$$\partial_{x_j} J(s, t, x) = \partial_{x_j} J(s, t, x) \quad (26)$$

$$= \det(\nabla_x X)(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x)) \partial_{x_j} \nabla_x X(s, t, x)) \quad (27)$$

$$= J(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x)) \partial_{x_j} \nabla_x X(s, t, x)). \quad (28)$$

As a consequence we get

$$\partial_t J(s, t, x) = J(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x)) \nabla_x \partial_t X(s, t, x)) \quad (29)$$

$$= -J(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x)) (\nabla_x b)(t, x) (\nabla_x X)(s, t, x)) \quad (30)$$

$$- J(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x)) b(t, x) \cdot \nabla_x (\nabla_x X)(s, t, x)). \quad (31)$$

Using cyclicity of the trace and (9) we get for the term in (30) that

$$- J(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x))(\nabla_x b)(t, x)(\nabla_x X)(s, t, x)) = \quad (32)$$

$$= - J(s, t, x) \operatorname{tr}((\nabla_x X)(s, t, x)(\nabla_x X)(t, s, X(s, t, x))(\nabla_x b)(t, x)) \quad (33)$$

$$= - J(s, t, x) \operatorname{tr}((\nabla_x b)(t, x)) = - \operatorname{div}_x(b(t, x)) J(s, t, x). \quad (34)$$

On the other hand, using the explicit form of the derivative along the j -th variable we get for (31)

$$- J(s, t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x))b(t, x) \cdot \nabla_x(\nabla_x X)(s, t, x)) \quad (35)$$

$$= - J(s, t, x) \sum_{j=1}^d b_j(t, x) \operatorname{tr}((\nabla_x X)(t, s, X(s, t, x))\partial_{x_j}(\nabla_x X)(s, t, x)) \quad (36)$$

$$= - \sum_{j=1}^d b_j(t, x) \partial_{x_j} J(s, t, x) = - b(t, x) \cdot (\nabla_x J)(s, t, x). \quad (37)$$

Summing all up we get that from basic properties of the divergence operator we get

$$\partial_t J(s, t, x) = - \operatorname{div}_x(b(t, x)) J(s, t, x) - b(t, x) \cdot (\nabla_x J)(s, t, x) \quad (38)$$

$$= - \operatorname{div}(b(t, x)) J(s, t, x), \quad (39)$$

which gives us (7).

□

Exercise 3

Let $T \geq 0$ be a positive real number, $b \in C^2([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$ be a bounded vector-field. Assume that $u_0 \in C^1(\mathbb{R}^d)$ and that $f \in C^1([0, T] \times \mathbb{R}^d)$.

Prove that there exists a unique solution $u \in C^1([0, T] \times \mathbb{R}^d)$ for the inhomogeneous transport equation

$$\begin{cases} \partial_t u(t, x) + \operatorname{div}_x(b(t, x)u(t, x)) = f(t, x), & \forall (t, x) \in [0, T] \times \mathbb{R}^d, \\ u(0, x) = u_0(x), & \forall x \in \mathbb{R}^d. \end{cases} \quad (40)$$

Proof. Consider first the flow X associated to b ; given that $b \in C^2([0, T] \times \mathbb{R}^d; \mathbb{R}^d)$, we get that $X \in C^2([0, T] \times [0, T] \times \mathbb{R}^d; \mathbb{R}^d)$. As above, define the Jacobian $J = \det(\nabla_x X) \in C^1([0, T] \times [0, T] \times \mathbb{R}^d)$.

To prove existence of a solution, consider the following function

$$v(t, x) := u_0(X(0, t, x)) J(0, t, x) + \int_0^t ds f(s, X(s, t, x)) J(s, t, x). \quad (41)$$

If we define $F(s, t, x) := f(s, X(s, t, x)) J(s, t, x)$ and we use (7), we can get

$$\partial_t F(s, t, x) = (\partial_t X)(s, t, x) \cdot (\nabla_x f)(s, X(s, t, x)) J(s, t, x) \quad (42)$$

$$- f(s, X(s, t, x)) \operatorname{div}_x(b(t, x) J(s, t, x)) \quad (43)$$

$$= - (b(t, x) \cdot \nabla_x X)(s, t, x) \cdot (\nabla_x f)(s, X(s, t, x)) J(s, t, x) \quad (44)$$

$$- f(s, X(s, t, x)) \operatorname{div}_x(b(t, x) J(s, t, x)) \quad (45)$$

$$= - b(t, x) \cdot \nabla_x(f(s, X(s, t, x))) J(s, t, x) \quad (46)$$

$$- f(s, X(s, t, x)) \operatorname{div}_x(b(t, x) J(s, t, x)) \quad (47)$$

$$= - \operatorname{div}_x(b(t, x) f(s, X(s, t, x)) J(s, t, x)) \quad (48)$$

$$= - \operatorname{div}_x(b(t, x) F(s, t, x)). \quad (49)$$

On the other hand, using (7) again we get

$$\partial_t(u_0(X(s, t, x)) J(0, t, x)) = \quad (50)$$

$$= (\partial_t X)(s, t, x) \cdot (\nabla_x u_0)(X(s, t, x)) J(0, t, x) \quad (51)$$

$$+ u_0(X(s, t, x)) \partial_t J(0, t, x) \quad (52)$$

$$= ((b(t, x)) \cdot \nabla_x X)(s, t, x) \cdot (\nabla_x u_0)(X(s, t, x)) J(0, t, x) \quad (53)$$

$$- u_0(X(s, t, x)) \operatorname{div}_x(b(t, x) J(0, t, x)) \quad (54)$$

$$= - (b(t, x)) \cdot \nabla_x(u_0(X(s, t, x))) J(0, t, x) \quad (55)$$

$$- u_0(X(s, t, x)) \operatorname{div}_x(b(t, x) J(0, t, x)) \quad (56)$$

$$= - \operatorname{div}_x(b(t, x) u_0(X(s, t, x)) J(0, t, x)). \quad (57)$$

Collecting the previous estimates and using the fundamental theorem of calculus, we get

$$\partial_t v(t, x) = \partial_t(u_0(X(s, t, x)) J(0, t, x)) + F(t, t, x) + \int_0^t ds \partial_t F(s, t, x) \quad (58)$$

$$= - \operatorname{div}_x(b(t, x) u_0(X(s, t, x)) J(0, t, x)) + f(t, x) \quad (59)$$

$$- \int_0^t ds \operatorname{div}_x(b(t, x) F(s, t, x)) \quad (60)$$

$$= f(t, x) - \operatorname{div}_x(b(t, x) v(t, x)), \quad (61)$$

and therefore v is solution to (40).

Consider now u a solution to (40). From the definition of X and (6) we get

$$\partial_s(u(s, X(s, t, x)) J(s, t, x)) = (\partial_s u)(s, X(s, t, x)) J(s, t, x) + \quad (62)$$

$$+ (\partial_s X)(s, t, x) \cdot (\nabla_x)(s, X(s, t, x)) J(s, t, x) \quad (63)$$

$$+ u(s, X(s, t, x)) (\partial_s J)(s, t, x) \quad (64)$$

$$= f(s, X(s, t, x)) J(s, t, x). \quad (65)$$

If we integrate in s we now get

$$\int_0^t ds f(s, X(s, t, x)) J(s, t, x) = [u(s, X(s, t, x)) J(s, t, x)]_{s=0}^{s=t} \quad (66)$$

$$= u(t, x) - u_0(X(0, t, x)) J(0, t, x). \quad (67)$$

This means that if u is a solution, u must be equal to v defined above, and the solution is therefore unique.

□