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Exercise 1

Let T > 0 be a positive real number and b € C* ([O,T] X Rd;Rd) be a bounded vector
field. Let X € G ([0,7] x [0,T] x R:;R?) be the flow associated to b, i.e., the unique
differentiable solution to

0sX (s,t,2) =b(s,X (s,t,2)), V(s t,x)e[0,T]x[0,T] x RY, (1)
X (t,t,x) =z, VY (t,z) € [0,T] x R?
a Prove that X satisfies the semigroup property, i.e.,
X (rys, X (s,t,x)) = X (r,t,x), Vrs,tel0,T], YeeRY (2)

b Use point a to prove that for any s,¢ € [0,7] the map X (s,t,-) € C' (R4 RY) is a
C'! diffeomorphism, i.e. it is invertible with its inverse in C* ( d. Rd)

Proof. For the proof of a, fix s,t € [0,L], € R? and consider the functions u (r) :=
X (r,s,X (s,t,x)) and v (r) := X (r,t,z). By definition of X, they both solve the problem

(1) =b(r, f(r), rel0,T],
{ﬂ)=X@t@ 3)

with s and z fixed. Given that the solution to this problem is unique, u is equal to v and
this proves (2).

To prove b, using point a we get that for any s,t € [0,T], z € R? we get
X (6,5, X (s,8,2) = @ = X (5,0, X (t,5,2)).. (4)

This implies that X (¢, s, -) is both a left and right inverse of X (s, t,-); given that X (¢, s, -)
is C1, this proves b.
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Exercise 2

Let T > 0 be a positive real number, b € C* ([0, T] x R Rd) be a bounded vector field and
X € C'([0,T] x [0,T] x R4 RY) be again the flow associated to b. Define the Jacobian
JeC([0,T] x [0,T] x R:R) as we did in class as

J (s,t,x) :=det (V,X) (s,t,x). (5)



From classical results in the theory of ordinary differential equations, ds.J exists and is in
C ([0,T] x [0,T] x R%;R).

Show that J (s, t,z) > 0 for all (s,t,2) € [0,T] x [0,T] x R? and that J solves

(05) (s,t,2) = (divyd) (5, X (s,t,2)) J (s, t,2), V(s,t,z) e [0,T] x [0,T] x R?,
{ J(t,t,x) =1, Y (t,z) e [0,T] x RY
(6)

Prove moreover that J satisfies

o (s,t,z) + divy (b(t,x) J (s, t,x)) = 0. (7)
Hint: You can assume without proof that 0sV X exists and it is in C ([0, T] x [0,T] x R R),
and is equal to V05X . For a proof of this result, one can look at Theorem 2.10 in the book

Ordinary Differential Equations and Dynamical Systems from Gerald Teschl,
available online for free.

Proof. From Exercise 1 we get that

X (s,t, X (t,8,2)) = x. (8)

If we differentiate this family of equalities we get the equality of matrices given as:

(Ve X) (t,s,2) - (Vi X) (s, t, X (t,8,2)) = idga . (9)

If we now do the determinant of both sides we get, by definition of Jacobian, that

J(tys,x) J (s,t, X (t,s,2)) = 1. (10)

This immediately implies that .J (s, t,z) # 0 for any (s,t,z) € [0, T]x[0, T] x R%; moreover,
given that the sign of J is a continuous function, J itself is either going to be always
positive or always negative. Given that J (¢,¢,x) = det (VX) (¢,¢,2) = detidga = 1, we
get that it needs to be always positive.

For the next part, first recall the Jacobi’s formula, i.e., let A e C*([0,T]; GL, (R)); then
we have that det (A) € C! ([0,7]) and

dydet (A (1)) = (det A (t)) tr ((A ()" (2A) (t)) . (11)

As a consequence, the derivative of J can be computed as

OsJ (s,t,x) = 05 (det (V4 X) (s,t,x)) (12)
=det (Vo X) (s,t,x)) tr (VX)) (t,8, X (s,t,2)) 05 (VLX) (s,t,2))  (13)
=J (s, t,z)tr (VX)) (t, 5, X (s,t,2)) 0s (Vo X) (s,t,2)) . (14)

Recall that we can from the definition of X we get

0sX (s,t,z) =b(s,X (s,t,x)). (15)



Applying now the operator V, we get

0sVaX (s,t,2) = V305X (s,t,x) = (Vo X) (s,t,2) (Vgb) (s, X (s,t,2)) . (16)

Substituting back in the derivative of J and using (9) we get

0sd (s,t,x) = J (s,t,2) tr (VLX) (¢, 8, X (s,t,2)) (Vo X) (s,t,2) (V) (s, X (s,t,a:)z) |
17
= J (s,t,z)tr (Vzb) (s, X (s,t,2))). (18)

By definition of trace now we get that if F' is a vector field, tr (V,F) = div, F, and

therefore

OsJ (s,t,x) = (divy b) (s, X (s,t,z)) J (s,t,2) . (19)

Using the fact that J (¢,t,z) = det (V. X) (¢t,t,z) = det (V,z) = 1 we get (6).

For the derivative in t of J (s,t, ), we first recall that the derivative in t of X (s,¢,z) is
given by

X (s,t,x) = =b(t,x) - (VzX) (s,t,x). (20)

As a consequence we get that

OrJ (s,t,x) = ¢ (det (VX)) (s, ¢, )) (21)
=det (V. X) (s,t,2) tr (Vo X) (¢, 8, X (s,t,2)) 0/ VX (s,t,2)) (22)
=J (s, t,z)tr (Vo X) (t,8, X (s,t,2)) Vi 0: X (s,t,2)) . (23)

Applying the definition of the gradient we get

V0 X (s,t,2) = =V, (b(t,x) - (VyX) (s,t,2)) (24)
= —(Vyb) (t,x) (Vo X) (s,t,2) —b(t,x) - Vu (Vo X) (s,t, ) (25)

On the other hand, we can consider what is the gradient in = of J; to do so, we consider
the derivative along the j-th component of J to get

O, J (8,t,0) = 0z, J (5,1, 7) (26)
= det (Vo X) (s,t,2) tr (VaX) (t, 5, X (s,1,2)) 0, VaX (s,t,2))  (27)
= J(s,t,x)tr (VoX) (t,5,X (s,8,2)) 0, Ve X (5,t,2)) . (28)

As a consequence we get
Ord (s,t,x) = J (s, t,x)tr (Vo X) (¢, 8, X (s,t,2)) Vi 0r X (5, ¢, 2)

)
=—J (s, t,z)tr (VX)) (t, 8, X (s,t,2)) (Vb) (t,2) (VX)) (s,t, 7)) (30)
—J(s,t,x)tr (Vo X) (t,8, X (s,t,2))b(t,x) - Vo (Vo X) (s, t,2)). (31)



Using cyclicity of the trace and (9) we get for the term in (30) that

—J(s,t,2)tr (V2 X) (t,5, X (s,t,2)) (Vgb) (t,2) (Vo X) (s, t,2)) = (32)
=—J (s, t,z)tr (VX)) (s,t,2) (Vo X) (t, 8, X (s,t,2)) (Vzb) (t,2)) (33)
=—J (s, t,z)tr (Vzd) (t,x)) = —divy (b(t,z)) J (s,t,x) . (34)

On the other hand, using the explicit form of the derivative along the j-th variable we get
for (31)

—J(s,t,x)tr (VoX) (£, 8, X (s,t,2)) b(t,x) - Vo (Vi X) (8,1, 2)) (35)
d
= —J(s,t,x) 2 bj (t,x)tr ((V:CX) (t,s,X (s,t,x)) O, (VX)) (s,t, x)) (36)
j=1
d
= = > b (t,2) 0x) T (s, t,2) = =b(t,z) - (Vo) (5,8, 2) . (37)
j=1

Summing all up we get that from basic properties of the divergence operator we get

OJ (s, t,x) = —divy (b(t,x)) J (s, t,z) —b(t,z) - (Vi) (s,t,x) (38)
= —div(b(t,z,) J (s, t,2)), (39)

which gives us (7).

Exercise 3

Let T > 0 be a positive real number, b € C? ([O, T] x R Rd) be a bounded vector-field.
Assume that up € C! (R?) and that f e C* ([0,T] x R?).

Prove that there exists a unique solution u € C* ([O,T ] x Rd) for the inhomogeneous
transport equation

(40)

owu (t, ) + divy (b (t,z)u(t,z)) = f(t,z), Y(t,x)e[0,T]x RY
{U(O,w):uo(a;), Y re R4

Proof. Consider first the flow X associated to b; given that b € C? ([O,T] X ]Rd;Rd), we
get that X € C? ([0, x [0,T] x R%;RY). As above, define the Jacobian J = det (V,X) €
C1([0,T] x [0,T] x RY).

To prove existence of a solution, consider the following function

v(t,z) :=ug (X (0,t,2)) J(0,t,x) + fo ds f(s,X (s,t,z))J (s,t,x). (41)



If we define F (s,t,x) := f (s, X (s,t,2)) J (s,t,x) and we use (7), we can get

OF (s,t,z) = (0:X) (s,t,2) - (Vo f) (s, X (s,t,2)) J (s,t, )

— f (s, X (s,t,x))divy (b(t,x) J (s,t,2))

=—(b(t,z) Vo X) (s,t,x) - (Vaf) (s, X (s,t,2)) J (s,t,x)
—f(s,X (s,t,z))divy (b(t,x) J (s,t,2))

=—b(t,x) Vi (f(s,X (s,t,2)))J (s,t,2)
— f(s, X (s,t,z))divy (b(t, ) J (s,t,x))

= —divy (b(t,x) f (s, X (s,t,2)) J (s,t,2))

= —div, (b(t,x) F (s,t,2)) .

On the other hand, using (7) again we get

0t (uo (X (s,t,2)) J (0,t,z)) =

= (0:X) (s,t,x) - (Vzup) (X (s,t,2)) J (0,¢,x)
+up (X (s,t,x)) 0 J (0,t, )

= (b (t,2))  VaX) (5,1,) - (Vi) (X (5,1,2)) J (0,1,2)
—ug (X (s,t,2))divy (b(t,x) J (0,t,2))

(1)) Vi o (X (5,8,2))) T (0,1,2)
—ug (X (s,t,2))divg (b(¢,x) J (0,t,2))

= —divy (b(t,x) ug (X (s,t,2)) J (0,t,2)) .
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Collecting the previous estimates and using the fundamental theorem of calculus, we get

o (t,x) = 0 (ug (X (s,t,2)) J(0,t,x)) + F (¢, t,z) + Jot ds OiF (s,t,x)

= —divy (b(t,2)uo (X (s,,2)) J (0,t,2)) + f (¢, 2)
—Lt ds divg (b(t,z) F (s,t,7))
= f(t,2) — divy (b(t,2) v (£, 7)),
and therefore v is solution to (40).

Consider now u a solution to (40). From the definition of X and (6) we get

0s (u (s, X (s,t,2)) J (s,t,2)) = (Gu) (s, X (s,t,x)) J (s,t,x) +

+ (0sX) (s, t,x) - (Vg) (s, X (s,t,2)) J (s,t,x)

+u (s, X (s,t,2)) (0s]) (s,t,x)
= f(s,X (s,t,x)) J(s,t,x).

If we integrate in s we now get

L ds f(s,X (s,t,2))J (s,t,x) = [u(s, X (s,t,2)) J(s,t,x)]:zj]
=u(t,z) —uo (X (0,t,z))J(0,¢, ).
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This means that if v is a solution, u must be equal to v defined above, and the solution
is therefore unique.
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