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Exercise 1

Let T ě 0 be a positive real number and b P C1
`

r0, T s ˆ Rd;Rd
˘

be a bounded vector
field. Let X P C1

`

r0, T s ˆ r0, T s ˆ Rd;Rd
˘

be the flow associated to b, i.e., the unique
differentiable solution to

"

BsX ps, t, xq “ b ps,X ps, t, xqq , @ ps, t, xq P r0, T s ˆ r0, T s ˆ Rd,
X pt, t, xq “ x, @ pt, xq P r0, T s ˆ Rd (1)

a Prove that X satisfies the semigroup property, i.e.,

X pr, s,X ps, t, xqq “ X pr, t, xq , @ r, s, t P r0, T s , @x P Rd. (2)

b Use point a to prove that for any s, t P r0, T s the map X ps, t, ¨q P C1
`

Rd;Rd
˘

is a
C1 diffeomorphism, i.e. it is invertible with its inverse in C1

`

Rd;Rd
˘

.

Proof. For the proof of a, fix s, t P r0, Ls , x P Rd and consider the functions u prq :“
X pr, s,X ps, t, xqq and v prq :“ X pr, t, xq. By definition of X, they both solve the problem

"

Brf prq “ b pr, f prqq , r P r0, T s ,
f psq “ X ps, t, xq ,

(3)

with s and x fixed. Given that the solution to this problem is unique, u is equal to v and
this proves (2).

To prove b, using point a we get that for any s, t P r0, T s, x P Rd we get

X pt, s,X ps, t, xqq “ x “ X ps, t,X pt, s, xqq . (4)

This implies that X pt, s, ¨q is both a left and right inverse of X ps, t, ¨q; given that X pt, s, ¨q
is C1, this proves b.

Exercise 2

Let T ě 0 be a positive real number, b P C1
`

r0, T s ˆ Rd;Rd
˘

be a bounded vector field and
X P C1

`

r0, T s ˆ r0, T s ˆ Rd;Rd
˘

be again the flow associated to b. Define the Jacobian
J P C

`

r0, T s ˆ r0, T s ˆ Rd;R
˘

as we did in class as

J ps, t, xq :“ det p∇xXq ps, t, xq . (5)
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From classical results in the theory of ordinary differential equations, BsJ exists and is in
C
`

r0, T s ˆ r0, T s ˆ Rd;R
˘

.

Show that J ps, t, xq ą 0 for all ps, t, xq P r0, T s ˆ r0, T s ˆ Rd and that J solves
"

pBsJq ps, t, xq “ pdivx bq ps,X ps, t, xqq J ps, t, xq , @ ps, t, xq P r0, T s ˆ r0, T s ˆ Rd,
J pt, t, xq “ 1, @ pt, xq P r0, T s ˆ Rd.

(6)

Prove moreover that J satisfies

BtJ ps, t, xq ` divx pb pt, xq J ps, t, xqq “ 0. (7)

Hint: You can assume without proof that Bs∇xX exists and it is in C
`

r0, T s ˆ r0, T s ˆ Rd;R
˘

,
and is equal to ∇xBsX. For a proof of this result, one can look at Theorem 2.10 in the book
Ordinary Differential Equations and Dynamical Systems from Gerald Teschl,
available online for free.

Proof. From Exercise 1 we get that

X ps, t,X pt, s, xqq “ x. (8)

If we differentiate this family of equalities we get the equality of matrices given as:

p∇xXq pt, s, xq ¨ p∇xXq ps, t,X pt, s, xqq “ idRd . (9)

If we now do the determinant of both sides we get, by definition of Jacobian, that

J pt, s, xq J ps, t,X pt, s, xqq “ 1. (10)

This immediately implies that J ps, t, xq ‰ 0 for any ps, t, xq P r0, T sˆr0, T sˆRd; moreover,
given that the sign of J is a continuous function, J itself is either going to be always
positive or always negative. Given that J pt, t, xq “ det p∇Xq pt, t, xq “ det idRd “ 1, we
get that it needs to be always positive.

For the next part, first recall the Jacobi’s formula, i.e., let A P C1 pr0, T s ;GLn pRqq; then
we have that det pAq P C1 pr0, T sq and

Bt det pA ptqq “ pdetA ptqq tr
´

pA ptqq´1
pBtAq ptq

¯

. (11)

As a consequence, the derivative of J can be computed as

BsJ ps, t, xq “ Bs pdet p∇xXq ps, t, xqq (12)

“ det pp∇xXq ps, t, xqq tr pp∇xXq pt, s,X ps, t, xqq Bs p∇xXq ps, t, xqq (13)

“ J ps, t, xq tr pp∇xXq pt, s,X ps, t, xqq Bs p∇xXq ps, t, xqq . (14)

Recall that we can from the definition of X we get

BsX ps, t, xq “ b ps,X ps, t, xqq . (15)
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Applying now the operator ∇x we get

Bs∇xX ps, t, xq “ ∇xBsX ps, t, xq “ p∇xXq ps, t, xq p∇xbq ps,X ps, t, xqq . (16)

Substituting back in the derivative of J and using (9) we get

BsJ ps, t, xq “ J ps, t, xq tr pp∇xXq pt, s,X ps, t, xqq p∇xXq ps, t, xq p∇xbq ps,X ps, t, xqqq
(17)

“ J ps, t, xq tr pp∇xbq ps,X ps, t, xqqq . (18)

By definition of trace now we get that if F is a vector field, tr p∇xF q “ divx F , and
therefore

BsJ ps, t, xq “ pdivx bq ps,X ps, t, xqq J ps, t, xq . (19)

Using the fact that J pt, t, xq “ det p∇xXq pt, t, xq “ det p∇xxq “ 1 we get (6).

For the derivative in t of J ps, t, xq, we first recall that the derivative in t of X ps, t, xq is
given by

BtX ps, t, xq “ ´b pt, xq ¨ p∇xXq ps, t, xq . (20)

As a consequence we get that

BtJ ps, t, xq “ Bt pdet p∇xXq ps, t, xqq (21)

“ det p∇xXq ps, t, xq tr pp∇xXq pt, s,X ps, t, xqq Bt∇xX ps, t, xqq (22)

“ J ps, t, xq tr pp∇xXq pt, s,X ps, t, xqq∇xBtX ps, t, xqq . (23)

Applying the definition of the gradient we get

∇xBtX ps, t, xq “ ´∇x pb pt, xq ¨ p∇xXq ps, t, xqq (24)

“ ´p∇xbq pt, xq p∇xXq ps, t, xq ´ b pt, xq ¨∇x p∇xXq ps, t, xq (25)

On the other hand, we can consider what is the gradient in x of J ; to do so, we consider
the derivative along the j-th component of J to get

BxjJ ps, t, xq “ BxjJ ps, t, xq (26)

“ det p∇xXq ps, t, xq tr
`

p∇xXq pt, s,X ps, t, xqq Bxj∇xX ps, t, xq
˘

(27)

“ J ps, t, xq tr
`

p∇xXq pt, s,X ps, t, xqq Bxj∇xX ps, t, xq
˘

. (28)

As a consequence we get

BtJ ps, t, xq “ J ps, t, xq tr pp∇xXq pt, s,X ps, t, xqq∇xBtX ps, t, xqq (29)

“ ´J ps, t, xq tr pp∇xXq pt, s,X ps, t, xqq p∇xbq pt, xq p∇xXq ps, t, xqq (30)

´ J ps, t, xq tr pp∇xXq pt, s,X ps, t, xqq b pt, xq ¨∇x p∇xXq ps, t, xqq . (31)
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Using cyclicity of the trace and (9) we get for the term in (30) that

´ J ps, t, xq tr pp∇xXq pt, s,X ps, t, xqq p∇xbq pt, xq p∇xXq ps, t, xqq “ (32)

“ ´J ps, t, xq tr pp∇xXq ps, t, xq p∇xXq pt, s,X ps, t, xqq p∇xbq pt, xqq (33)

“ ´J ps, t, xq tr pp∇xbq pt, xqq “ ´ divx pb pt, xqq J ps, t, xq . (34)

On the other hand, using the explicit form of the derivative along the j-th variable we get
for (31)

´ J ps, t, xq tr pp∇xXq pt, s,X ps, t, xqq b pt, xq ¨∇x p∇xXq ps, t, xqq (35)

“ ´J ps, t, xq
d
ÿ

j“1

bj pt, xq tr
`

p∇xXq pt, s,X ps, t, xqq Bxj p∇xXq ps, t, xq
˘

(36)

“ ´

d
ÿ

j“1

bj pt, xq BxjJ ps, t, xq “ ´b pt, xq ¨ p∇xJq ps, t, xq . (37)

Summing all up we get that from basic properties of the divergence operator we get

BtJ ps, t, xq “ ´divx pb pt, xqq J ps, t, xq ´ b pt, xq ¨ p∇xJq ps, t, xq (38)

“ ´div pb pt, x, q J ps, t, xqq , (39)

which gives us (7).

Exercise 3

Let T ě 0 be a positive real number, b P C2
`

r0, T s ˆ Rd;Rd
˘

be a bounded vector-field.
Assume that u0 P C

1
`

Rd
˘

and that f P C1
`

r0, T s ˆ Rd
˘

.

Prove that there exists a unique solution u P C1
`

r0, T s ˆ Rd
˘

for the inhomogeneous
transport equation

"

Btu pt, xq ` divx pb pt, xqu pt, xqq “ f pt, xq , @ pt, xq P r0, T s ˆ Rd,
u p0, xq “ u0 pxq , @ x P Rd.

(40)

Proof. Consider first the flow X associated to b; given that b P C2
`

r0, T s ˆ Rd;Rd
˘

, we
get that X P C2

`

r0, T s ˆ r0, T s ˆ Rd;Rd
˘

. As above, define the Jacobian J “ det p∇xXq P
C1

`

r0, T s ˆ r0, T s ˆ Rd
˘

.

To prove existence of a solution, consider the following function

v pt, xq :“ u0 pX p0, t, xqq J p0, t, xq `

ż t

0
ds f ps,X ps, t, xqq J ps, t, xq . (41)
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If we define F ps, t, xq :“ f ps,X ps, t, xqq J ps, t, xq and we use (7), we can get

BtF ps, t, xq “ pBtXq ps, t, xq ¨ p∇xfq ps,X ps, t, xqq J ps, t, xq (42)

´ f ps,X ps, t, xqqdivx pb pt, xq J ps, t, xqq (43)

“ ´pb pt, xq ¨∇xXq ps, t, xq ¨ p∇xfq ps,X ps, t, xqq J ps, t, xq (44)

´ f ps,X ps, t, xqqdivx pb pt, xq J ps, t, xqq (45)

“ ´b pt, xq ¨∇x pf ps,X ps, t, xqqq J ps, t, xq (46)

´ f ps,X ps, t, xqqdivx pb pt, xq J ps, t, xqq (47)

“ ´divx pb pt, xq f ps,X ps, t, xqq J ps, t, xqq (48)

“ ´divx pb pt, xqF ps, t, xqq . (49)

On the other hand, using (7) again we get

Bt pu0 pX ps, t, xqq J p0, t, xqq “ (50)

“ pBtXq ps, t, xq ¨ p∇xu0q pX ps, t, xqq J p0, t, xq (51)

` u0 pX ps, t, xqq BtJ p0, t, xq (52)

“ ´ppb pt, xqq ¨∇xXq ps, t, xq ¨ p∇xu0q pX ps, t, xqq J p0, t, xq (53)

´ u0 pX ps, t, xqqdivx pb pt, xq J p0, t, xqq (54)

“ ´pb pt, xqq ¨∇x pu0 pX ps, t, xqqq J p0, t, xq (55)

´ u0 pX ps, t, xqqdivx pb pt, xq J p0, t, xqq (56)

“ ´divx pb pt, xqu0 pX ps, t, xqq J p0, t, xqq . (57)

Collecting the previous estimates and using the fundamental theorem of calculus, we get

Btv pt, xq “ Bt pu0 pX ps, t, xqq J p0, t, xqq ` F pt, t, xq `

ż t

0
ds BtF ps, t, xq (58)

“ ´divx pb pt, xqu0 pX ps, t, xqq J p0, t, xqq ` f pt, xq (59)

´

ż t

0
ds divx pb pt, xqF ps, t, xqq (60)

“ f pt, xq ´ divx pb pt, xq v pt, xqq , (61)

and therefore v is solution to (40).

Consider now u a solution to (40). From the definition of X and (6) we get

Bs pu ps,X ps, t, xqq J ps, t, xqq “ pBtuq ps,X ps, t, xqq J ps, t, xq` (62)

` pBsXq ps, t, xq ¨ p∇xq ps,X ps, t, xqq J ps, t, xq (63)

` u ps,X ps, t, xqq pBsJq ps, t, xq (64)

“ f ps,X ps, t, xqq J ps, t, xq . (65)

If we integrate in s we now get

ż t

0
ds f ps,X ps, t, xqq J ps, t, xq “ ru ps,X ps, t, xqq J ps, t, xqss“t

s“0 (66)

“ u pt, xq ´ u0 pX p0, t, xqq J p0, t, xq . (67)
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This means that if u is a solution, u must be equal to v defined above, and the solution
is therefore unique.
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